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Abstract
We study the exact renormalization group flow for ultracold Fermi gases in
the unitary regime. We introduce a pairing field to describe the formation
of the Cooper pairs and take a simple ansatz for the effective action. A
set of approximate flow equations for effective couplings including boson
and fermionic fluctuations is derived. At some value of the running scale,
the system undergoes a phase transition to a gapped phase. The values of
the energy density, chemical potential, pairing gap and the corresponding
proportionality constants relating the interacting and non-interacting Fermi
gases are calculated. Standard mean-field results are recovered if we omit the
boson loops.

PACS numbers: 03.75.Ss, 03.75.Hh, 05.30.Fk, 74.20.Fg

The physics of ultracold fermionic gases has recently drawn much attention as it provides
an exciting possibility of studying the regime where the dynamics of the many-body system
becomes independent of the microscopical details of the underlying interaction between two
fermions. This regime can be probed using the technique of Feshbach resonances [1] when
the scattering length is tuned to be much larger than the average inter-particle separation.
The idealized case of the infinite scattering length a is often referred to as the unitary regime
(UR). In the a → −∞ limit, the ground-state energy per particle is proportional to that of the
non-interacting Fermi gas:

EGS = ξEFG = ξ
3

5

k2
F

2M
= ξ

3

5
EF , (1)

where M and kF are the fermion mass and Fermi momentum correspondingly, and ξ is the
universal proportionality constant, which does not depend on the details of the interaction or
type of fermions. The other dimensional characteristics of the cold Fermi gas in the UR such
as paring energy � or chemical potential μ can also be represented in the same way:

μ = ηEFG, � = εEFG. (2)

The infinite scattering length implies non-perturbative treatment. The most ‘direct’
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non-perturbative method is based on the lattice field theory [2, 3]. However, being potentially
the most powerful approach, lattice simulations still have many limitations related to finite-
size effects, discretization errors, etc, which may even become amplified in certain physical
situations (the system of several fermion species is one possible example). All that makes the
development of the analytic approaches indispensable. Several such approaches have been
suggested so far. The (incomplete) list includes the effective field theory (EFT) motivated
formalism exploring the systematic expansion in terms of dimensionality of space [4] and
a somewhat similar approach, based on the 1/N expansion [5]. More phenomenological
approaches using the density functional method and many-body variational formalism have
been developed in [6, 7].

In this paper, we consider the cold Fermi gas in the UR in the framework of the exact
renormalization group (ERG) method suggested in [8] and applied to the non-relativistic
many-fermion system with pairing in [9]. Different aspects of the ERG approach to non-
relativistic systems have also been extensively studied in several subsequent papers [10–13].
Being spiritually related to the EFT-based approaches the ERG formalism is however fully
non-perturbative and makes use of EFT as a guide to choose the ansatz for the effective action
and to fix boundary conditions. The technical details of the approach in the context of the
non-relativistic many-fermion systems were described in [10, 12] so that here we may give
only a short account of the formalism.

The central object of the ERG formalism is the average effective action �k which coincides
with the bare action at the beginning of the evolution when the scale k = � (with � being a
starting scale) and is a full quantum action when k = 0. The average effective action satisfies
the following flow equation,

∂k� = − i

2
Tr[(∂kR) (�(2) − R)−1], (3)

where

�(2) = δ2�

δφcδφc

(4)

and Rk(q) is the IR regulator. We require Rk(q) to vanish rapidly for q2 � k2 to ensure the
results to be independent of the regulator at the vanishing scale. We also require Rk(q) to
behave as Rk(q) � k2 for q2 � k2 so that for large scale the regulator acts as an effective
mass. To find a (approximate) solution of the ERG flow equations, one needs to choose the
ansatz for the effective action and fix the corresponding boundary conditions represented by
the bare action. There are no strict quantitative criteria for choosing the ansatz so that it seems
reasonable to work with the ‘relevant’ degrees of freedom and include the interaction terms
satisfying (and allowed by) all possible symmetry constraints. In our case, the degrees of
freedom are the strongly interacting fermions in the limit of the infinite scattering length. At
the starting scale, the medium parameters such as Fermi momenta, chemical potentials, etc,
play a little role so that at this scale the average effective action is just the bare action with the
standard four-fermion interaction in vacuum. One possible choice for the bare action is the
simplest attractive EFT-motivated four-fermion pointlike interaction with the Lagrangian

Li = − 1
4 C0

(
ψ †σ2ψ

†T)(
ψTσ2ψ

)
. (5)

With a decreasing scale the role of the many-body effects becomes more and more
important and at some scale one may anticipate the Cooper instabilities, symmetry breaking,
formation of the correlated fermion pairs, etc, to occur. Taking all that into account we write
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the ansatz for the effective action �k in the following form:

�[ψ,ψ †, φ, φ†] =
∫

d4x

[
φ†(x)

(
Zφ i∂t +

Zm

2m
∇2

)
φ(x) − U(φ, φ†)

+ ψ †
(

Zψ(i∂t + μ) +
ZM

2M
∇2

)
ψ

− g
( i

2
ψTσ2ψφ† − i

2
ψ †σ2ψ

†Tφ
)]

. (6)

We introduce the effective pairing field φ and use the standard Hubbard–Stratonovich
transformation to cancel the four-fermion interaction. The couplings Z(m,M,φ,ψ) and g should
in principle run with the scale. We also include the kinetic term for the pairing field needed
to compute the boson loop contributions. Note that our definition of the effective potential
includes the term −2μZφφ†φ which describes the coupling of the pairing field to the chemical
potential. We expand the effective potential about its minimum

U(φ, φ†) = u0 + u1(φ
†φ − ρ0) + 1

2 u2(φ
†φ − ρ0)

2, (7)

where un are defined at the minimum of the potential, φ†φ = ρ0. The coefficients at the
quadratic (in fields) term determine the phase of the system. When u1 > 0, the system is in
the symmetric phase with a trivial vacuum ρ0 = 0. At some critical scale, the coefficient u1

approaches zero and the system undergoes the transition to the broken (or condensed) phase
with ρ0 �= 0 so that in this phase

U(φ, φ†) = u0 + 1
2 u2(φ

†φ − ρ0)
2 + · · · . (8)

The renormalization factors can also be expanded about ρ = ρ0:

Zφ(φ, φ†) = zφ0 + zφ1(φ
†φ − ρ0) + · · · . (9)

The other renormalization factors can be expanded in the same way.
In this paper, we take into account the terms in the expansion of the effective potential

up to quartic order in the fields. The minimum ρ0 of the effective potential evolves with
the scale in the condensed phase and all the coefficients of the expansion should depend
on both the scale and ρ0. There are few options of how to organize the evolution of the
system. The choice would depend on the physical quantities which one would like to get at
the end of the evolution. The obvious and the most general one is just to run all quantities
of interest. The other (simpler) way to extract essentially the same information is to fix some
parameters, such as the chemical potential or particle number density, and run the rest. Fixed
particle number density and evolving chemical potential seems more interesting as it gives
the potential possibility of going to the BEC regime where the chemical potential eventually
becomes negative. In this case, the coefficients un and the renormalization factors will depend
on the running scale both explicitly and implicitly via the dependencies on ρ0(k) and μ(k).
We can, therefore, define a total derivative

d

dk
= ∂k +

dρ0

dk

∂

∂ρ0
+

dμ

dk

∂

∂μ
. (10)

Applying this to n = −∂U/∂μ at ρ = ρ0 and assuming the constant particle number density
we get

−2zφ0
dρ0

dk
+ χ

dμ

dk
= − ∂

∂μ
(∂kU)

∣∣∣∣
ρ=ρ0

, (11)

where we defined

χ = ∂2U

∂μ2

∣∣∣∣
ρ=ρ0

. (12)
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The other ERG flow equations can be obtained in a similar way so that after some algebra we
get

du0

dk
+ n

dμ

dk
= ∂kU |ρ=ρ0

, (13)

−u2
dρ0

dk
+ 2zφ0

dμ

dk
= ∂

∂ρ
(∂kU)

∣∣∣∣
ρ=ρ0

, (14)

du2

dk
− u3

dρ0

dk
+ 2zφ1

dμ

dk
= ∂2

∂ρ2
(∂kU)

∣∣∣∣
ρ=ρ0

, (15)

dzφ0

dk
− zφ1

dρ0

dk
+

1

2
χ ′ dμ

dk
= − 1

2

∂2

∂μ∂ρ
(∂kU)

∣∣∣∣
ρ=ρ0

, (16)

where we have defined

χ ′ = ∂3U

∂μ2∂ρ

∣∣∣∣
ρ=ρ0

. (17)

Note that we introduce the coefficient u3 which corresponds to the higher order terms in the
expansion of the effective potential. This coefficient occurs when we act on ∂2

∂ρ2 U with the
above-defined total derivative.

The set of evolution equations in the symmetric phase can easily be recovered using the
fact that the chemical potential does not run in the symmetric phase and that ρ0 = 0. All
the higher order terms such as χ, χ ′, u3 and zφ1 were calculated from the mean-field-type
expression when the boson loops are neglected and the effective potential can be calculated
explicitly (see below). The functions ρ0(k) and μ(k) which determine the physical energy gap
and chemical potential in the limit k → 0 were computed in [12]. In this paper, we focus on
the field-independent part of the effective potential u0 which is related to the energy density of
the Fermi gas in the UR. As can be seen from the evolution equations, the coefficient u0 is not
coupled to the rest but its value depends on running chemical potential μ(k) so that to find u0

we have to solve the whole system of the flow equations.
The explicit expressions for the driving term ∂kU can be obtained from the effective action

after the straightforward algebra and has the following form:

∂kU = −
∫

d3q

(2π)3

EFR√
E2

FR + �2
∂kRF +

1

2Zφ

∫
d3q

(2π)3

EBR√
E2

BR − V 2
B

∂kRB, (18)

where

EBR(q, k) = Zm

2m
q2 + u1 + u2(2φ†φ − ρ0) + RB(q, k), VB = u2φ

†φ = u2ρ (19)

and

EFR(q, k, μ) = ZM

2M

(
q2 − p2

F

)
+ RF (q, k, μ). (20)

The other driving terms can be obtained by taking the corresponding derivatives of ∂kU with
respect to boson fields. The expressions for u1 and u2 can be obtained in a rather trivial way
but the derivation of the driving term for the wavefunction renormalization factor Zφ is worth
discussing. To calculate Zφ , we need to consider a time-dependent background field. Taking

φ(x) = φ0 + η e−ip0t , (21)
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where η is a constant, we can get the evolution of Zφ from

∂kZφ = 1

V4

∂

∂p0

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣∣
p0=0

. (22)

Defining

Γ(3)
BBφ = ∂

∂φ
Γ(2)

BB =
(−2u2φ

† −2u2φ

0 −2u2φ
†

)
(23)

and

Γ(3)
FFφ = ∂

∂φ
Γ(2)

FF =
(

0 igσ2

0 0

)
, (24)

one can write the corresponding part of the evolution equation in the form

∂2

∂η∂η† ∂k�

∣∣∣∣
η=0

= +i Tr
[
(∂kRF )

(
Γ(2)

FF − RF

)−1
Γ(3)†

FFφ

(
Γ(2)

FF − RF

)−1
Γ(3)

FFφ

(
Γ(2)

FF − RF

)−1]
− i Tr

[
(∂kRB)

(
Γ(2)

BB − RB

)−1
Γ(3)†

BBφ

(
Γ(2)

BB − RB

)−1
Γ(3)

BBφ

(
Γ(2)

BB − RB

)−1]
.

(25)

Note that RF(B) is the diagonal matrix consisting of fermion (boson) regulators. After the
explicit calculations of the above traces we obtain the following.

Putting it all together we get

1

V4

∂

∂p0

(
∂2

∂η∂η† ∂k�

)
η=0

∣∣∣∣∣
p0=0

= −g2

4

∫
d3q

(2π)3

2E2
FR − �(c)2(

E2
FR + �(c)2

)5/2
sgn (q − pμ) ∂kRF

− u2V
(c)
B

2

∫
d3q

(2π)3

2E
(c)2
BR − 6E

(c)
BRV

(c)
B + V

(c)2
B(

E
(c)2
BR − V

(c)2
B

)5/2
∂kRB. (26)

As a check on this result, we note that u1 contains a piece −2μZφ . Hence we can also
obtain the evolution of Zφ from

−1

2

∂2

∂μ∂ρ
(∂kŪ)

∣∣∣∣
ρ=ρ0

. (27)

Taking the partial derivative with respect to μ one can see that the result we obtain from
equation (26) agrees with equation (27).

The energy density extracted from equation (18) for the effective potential contains the
field-independent contribution which is proportional to � so that the evolution equation as is
written above is still not enough to extract the physical energy density. Therefore, one needs to
make a subtraction based on a physical assumption that the energy density must be a constant,
equal to that of the free Fermi gas when u1 = u2 = · · · = un = 0. The modified flow equation
for the effective potential can be written as

∂kU = −
∫

d3q

(2π)3

(
1 − EFR√

E2
FR + �2

)
∂kRF +

1

2Zφ

∫
d3q

(2π)3

(
1 − EBR√

E2
BR − V 2

B

)
∂kRB.

(28)

Note that the flow does not change as the added term is field independent. We utilize the type
of the cut-off functions suggested first in [14](see further discussion in [15]) for the boson
ERG flow and in [10] for the fermionic case. This form of the cut-off functions allows for the
significant practical simplifications when calculating the loop diagrams. One notes that the
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cut-off function for fermions can be written in different forms. However, all of them should
contain the sgn function reflecting the particle and/or hole ‘faces’ of the in-medium fermion.
In this paper, we use the cut-off function in the form, considered in [13],

RF = 1

2M

[(
k2sgn(q − pμ) − (

q2 − p2
μ

))]
θ
(
k2 − ∣∣q2 − p2

μ

∣∣), (29)

where pμ = (2Mμ)1/2, and

RB = 1

2m
(k2 − q2)θ(k − q). (30)

The boson loops can be neglected at high scale, and the flow equation can be integrated
explicitly resulting in the following expression for the effective potential in the mean-field
(MF) approximation,

UMF(ρ, μ, k) =
∫

d3q

(2π)3
(EFR(q, μ, k) −

√
EFR(q, μ, k)2 + g2ρ) + C, (31)

where C is the constant of integration. After some algebra the expression for UMF can be
rewritten as

UMF(ρ, μ, k) =
∫

d3q

(2π)3

(
EFR(q, μ, k) +

g2ρ

2εq

−
√

EFR(q, μ, k)2 + g2ρ

)
− Mg2ρ

4πa
,

(32)

where εq = EFR(q, 0, 0).
We note again that all the higher order couplings u3, χ, χ ′ have been calculated from

UMF(ρ, μ, k) by taking the appropriate derivatives.
Differentiating with respect to ρ and setting the derivative and running scale equal to zero,

we find that �2 at the minimum satisfies

− M

4πa
+

1

2

∫
d3q

(2π)3

[
1

EFR(q, 0, 0)
− 1√

EFR(q, pF , 0)2 + �2

]
= 0. (33)

This is exactly the gap equation derived, for example, in [16].
To get the number density of fermions, we can differentiate U(ρ,μ, 0) with respect to μ.

This gives

n =
∫

d3q

(2π)3

[
1 − EFR(q, pF , 0)√

EFR(q, pF , 0)2 + �2

]
, (34)

again in agreement with [16]. One can therefore conclude that the standard MF result can be
reproduced within ERG if the boson fluctuations are neglected.

The boundary conditions for the coefficients ui can be obtained by differentiating the
expression for UMF with respect to ρ at the starting scale k = �.

It is worth mentioning that in this paper we include running of μ, ρ0, u
′
i s and the

renormalization factor Zφ . This is the minimum set of running parameters needed to go
beyond the mean-field approximation. The other couplings are held fixed at their initial
values.

The useful quantity to check the consistency of the approach is the boson scattering length
aB. It is well known that the MF calculations lead to the relation aB = 2aF , where aF is the
fermion scattering length. Deviation from this result is due to the boson loop effects and
therefore goes beyond the MF approximation. In our approach, the boson scattering length is
given by the relation aB = 2u2

/
Z2

φ . Using the cut-off in the form specified in equation (22)

6
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Figure 1. Deviation of the chemical potential from its MF value as a function of 1/(pF a).

and calculating the values of u2 and Z2
φ in the MF approximation, it can easily be demonstrated

that the relation aB = 2aF is indeed satisfied.
The calculations with boson loops lead to the relation aB = 1.13aF . It is still quite far

away from the relation aB = 0.6aF found in the full four-body calculations of [17]. It means
that the present truncation, while providing useful tool to go beyond the MF level, is still too
crude to realistically describe the effects of boson loops at least for the boson scattering length.
We note in passing that neither the Yukawa coupling nor fermionic renormalization constants
run in vacuum. It is worth mentioning that similar ERG studies [13] resulted in relation
aB = 0.91aF . The nature of the difference between two otherwise similar calculations is not
clear at present. This issue clearly requires further investigations which involves a detailed
comparison of two approaches.

The boson loop contributions are found to be small in the unitary regime when medium
effects are included. It looks somewhat puzzling if we compare this result with those obtained
for the boson–boson scattering length. We note however that universal constants seem to be
less sensitive to the boson loops effect than boson–boson scattering amplitude. The possible
physical reason is that the boson rescattering effects will be partially suppressed in medium.
A more definite conclusion can be drawn after a number of other effects, for example the
evolution of all the couplings, have been taken into account.

Note that it is important to keep boson loops for theoretical consistency as it leads to
the convex effective potential. The point is that in the vicinity of the physical point k = 0
the coupling u2 turns out to be vanishingly small so that the potential becomes flat with
the minimum shifted from the origin. We emphasize that the effective potential retains its
‘mexican hat’ form at any finite scale. With a decreasing scale the bump becomes less and less
pronounced so the effective potential eventually evolves into the convex form. Without the
boson loop contribution the u2 coupling is finite at k → 0 and not small so that the convexity
property of the effective potential is missing in agreement with the known results.

In addition, smallness of the boson loop contributions in the unitary regime qualitatively
agrees with the conclusion made in [18], where the effects of boson loops were included via
the corresponding self-energy corrections. According to [18], the boson loops contribution at
zero temperature is relatively small both in the unitary regime and in the BCS/BEC regions.
We show in figure 1 the deviation of the full chemical potential from its MF value as a function

7
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Table 1. Universal coefficients.

References ξ ε η

[2] 0.42 0.9 0.71
[24] 0.22
[3] 0.41 0.7
[25] 0.44 0.93
[26] 1.03
[4] 0.39
[27] 0.3 0.66
[30] 0.55

of (pF a)−1 in the BEC regime. This deviation is defined as ξ = (μ(MF) − μ(Full))/EF . It
is seen from figure 1 that this quantity is small compared to the typical value of the chemical
potential (μ ∼ O(1) at (pF a)−1 � 1). We emphasize that, although we believe that this
conclusion is qualitatively correct, the actual value of the ‘beyond-mean-field’ corrections can
be different if running of all the couplings is included. Besides, including higher order terms in
the effective action can further change the contributions from the ‘beyond-mean-field’ effects.
All that constitutes the subject for the future studies. We stress that, despite being clearly
subleading order, the boson loops contribution to the physical observables calculated in [18] is
still larger than that obtained in this paper. To understand the cause of this deviation, one needs
to establish one-to-one diagrammatic correspondence between ERG and the more traditional
approach adopted in [18]. It is a difficult and still unsolved problem as ERG includes, in
principle, an infinite (and probably mixed) set of diagrams so that one-to-one correspondence
between different contributions in the ERG approach and certain classes of diagrams may
simply not exist.

Now we turn to the results. First observation is that the results become practically
independent on the starting scale � if � � 10pF . The phase transition to the condensed phase
occurs at kcrit � pF . One notes that the calculations with other types of cut-offs, both sharp
and smooth, lead to relatively close values of kcrit [9, 12]. The fact that all values of kcrit are
clustered around the value of kF makes good sense as at this scale the system becomes sensible
to the medium effects such as Cooper instabilities, gap formation, etc.

We found the values of 0.62, 0.96 and 1.11 for the universal coefficients ξ, η

and ε correspondingly. The calculations without boson loops give ξMF (ηMF , εMF ) =
0.65(0.98, 1.14). One notes that these values satisfy the relation � ∼ 2EGS found in [2]. The
effect of the boson loops is found to be small for both the optimized cut-off function used in
this paper and the smoothed theta function used in [9]. One notes, however, that two cut-offs
lead to different signs of the ‘beyond-mean-field’ contribution. In the ideal case all the cut-offs
should, of course, lead to the same results but in practice the unavoidable truncation of the
effective action will always lead to some uncertainties. Taking into account the smallness of
the boson loop effects it is hard to see if this sign uncertainty is the result of truncation or just
numerical instabilities which are known to be larger for expressions involving step functions.

The obtained value for ξ is close to the experimental data from [19], ξ = 0.74(7). The
other measurements give ξ = 0.34(15) and η = 0.6(15) [20]; ξ = 0.32+0.13

−0.10 and η = 0.53+0.13
−0.10

[21]; ξ = 0.46(5) and η = 0.77(5) [22]; ξ = 0.51(4) and η = 0.85(4) [23]. The results of
theoretical calculations [4, 2, 24–27, 3, 13] are summarized in table 1.

As one can see both experiment and numerical simulations do not provide the coherent
value of the ξ constant so it is difficult to judge the quality of the numerical estimates provided

8
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by the ERG calculations. One may only conclude that the ERG approach leads to the sensible
values of the universal coefficients consistent with the experiment and lattice calculation but
a more detailed comparison can be done when more accurate date are obtained. We note,
however, that the values of the universal parameters are still somewhat higher than the ‘world
average’. One possible cause could be the neglect of the screening effects [28] which are
known to decrease the values of the gap and energy density. Naive extrapolation of our results
using the known value of the Gorkov–Melik–Barkhudarov’s correction [28] indeed brings the
values of the universal coefficients closer to the ‘world average’ of the lattice and experimental
data. Clearly, this point requires further analysis and the corresponding work is now in progress
[29] (see also [30]). There are several other directions where the current ERG approach can
further be developed. First, as mentioned above, running of all coupling constants should be
included. Second, the calculations with the entire effective potential taking into account the
screening effects should also be performed [31]. Among the other physical applications one
could mention the extension to the finite-temperature case and analysis of the deviations from
the unitary limit.

Acknowledgments

The author is grateful to Mike Birse, Niels Walet, Judith McGovern and Jean-Paul Blaizot for
the uncounted number of valuable discussions.

References

[1] Timmermans E et al 2001 Phys. Lett. A 285 228
[2] Carlson J et al 2003 Phys. Rev. Lett. 91 050401
[3] Astrakharchik G E et al 2004 Phys. Rev. Lett 93 200404
[4] Nishida Y and Son D T 2006 Phys. Rev. Lett 97 050403

Schafer T 2007 Phys. Rev. A 76 063618
[5] Nikolic P and Sachdev S 2007 Phys. Rev. A 75 033608 (arXiv:cond-mat/0609106)
[6] Bulgac A 2007 Phys. Rev. A 75 033608 (arXiv:cond-mat/0703526)
[7] Haussmann R et al 2007 Phys. Rev. A 76 040502
[8] Wetterich C 1993 Phys. Lett. B 301 90
[9] Birse M C, Krippa B, Walet N R and McGovern J A 2005 Phys. Lett. B 605 287

[10] Krippa B 2006 J. Phys. A: Math. Gen. 39 8075
[11] Salmhofer M et al 2004 Prog. Theor. Phys. 112 943

Schuetz F and Kopietz P 2006 J. Phys. A: Math. Gen. 39 8205
[12] Krippa B 2007 Eur. Phys. J. A 31 734

Birse M C, Krippa B, Walet N R and McGovern J A 2005 Nucl. Phys. A 749 134
Birse M C, Krippa B, Walet N R and McGovern J A 2005 Int. J. Mod. Phys. A 20 596
Krippa B 2006 Phys. Lett. 643 104

[13] Diehl S, Gies H, Pawlowski J M and Wetterich C 2007 Phys. Rev. A 76 021602 (arXiv:cond-mat/0701198)
[14] Litim D F 2000 Phys. Lett. B 486 92

Litim D F 2001 Phys. Rev. D 64 105007
Litim D F 2001 Int. J. Mod. Phys. A 16 2081

[15] Litim D F 2002 arXiv:hep-th/0208117
[16] Papenbrock T and Bertsch G F 1999 Phys. Rev. C 59 2052
[17] Petrov D S, Salomon C and Shlyapnikov G V 2004 Phys. Rev. Lett. 93 090404
[18] Pieri P et al 2004 Phys. Rev. B 70 094508
[19] Gehm M E et al 2003 Phys. Rev. A 68 011401
[20] Bourdel T et al 2004 Phys. Rev. Lett. 93 050401
[21] Bartenstein M et al 2004 Phys. Rev. Lett. 92 120401
[22] Partridge G B et al 2006 Science 311 503
[23] Kinast J et al 2005 Science 307 1296
[24] Lee D 2006 Phys. Rev. B 73 115112

9

http://dx.doi.org/10.1016/S0375-9601(01)00346-2
http://dx.doi.org/10.1103/PhysRevLett.91.050401
http://dx.doi.org/10.1103/PhysRevLett.93.200404
http://dx.doi.org/10.1103/PhysRevLett.97.050403
http://dx.doi.org/10.1103/PhysRevA.76.063618
http://dx.doi.org/10.1103/PhysRevA.75.033608
http://www.arxiv.org/abs/cond-mat/0609106
http://dx.doi.org/10.1103/PhysRevA.75.031605
http://www.arxiv.org/abs/cond-mat/0703526
http://dx.doi.org/10.1103/PhysRevA.76.040502
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1016/j.physletb.2004.11.044
http://dx.doi.org/10.1088/0305-4470/39/25/S19
http://dx.doi.org/10.1143/PTP.112.943
http://dx.doi.org/10.1088/0305-4470/39/25/S28
http://dx.doi.org/10.1140/epja/i2006-10286-2
http://dx.doi.org/10.1016/j.nuclphysa.2004.12.022
http://dx.doi.org/10.1142/S0217751X05021889
http://dx.doi.org/10.1103/PhysRevA.76.021602
http://www.arxiv.org/abs/cond-mat/0701198
http://dx.doi.org/10.1016/S0370-2693(00)00748-6
http://dx.doi.org/10.1103/PhysRevD.64.105007
http://dx.doi.org/10.1142/S0217751X01004748
http://www.arxiv.org/abs/hep-th/0208117
http://dx.doi.org/10.1103/PhysRevC.59.2052
http://dx.doi.org/10.1103/PhysRevLett.93.090404
http://dx.doi.org/10.1103/PhysRevB.70.094508
http://dx.doi.org/10.1103/PhysRevA.68.011401
http://dx.doi.org/10.1103/PhysRevLett.93.050401
http://dx.doi.org/10.1103/PhysRevLett.92.120401
http://dx.doi.org/10.1126/science.1122876
http://dx.doi.org/10.1126/science.1109220
http://dx.doi.org/10.1103/PhysRevB.73.115112


J. Phys. A: Math. Theor. 42 (2009) 465002 B Krippa

[25] Bulgac A, Drut J E and Magierski P 2008 Phys. Rev. A 78 023625
[26] Chang S Y et al 2004 Phys. Rev. A 70 043602
[27] Abe T and Seki R 2009 Phys. Rev. C 79 054003 (arXiv:0708.2524)
[28] Gorkov L P and Melik-Barkhudarov T K 1961 Sov. Phys.—JETP 13 1018
[29] Krippa B et al unpublished
[30] Floerchinger S et al 2008 Phys. Rev. B 78 174528 (arXiv:0808.0150)
[31] Krippa B unpublished

10

http://dx.doi.org/10.1103/PhysRevA.78.023625
http://dx.doi.org/10.1103/PhysRevA.70.043602
http://dx.doi.org/10.1103/PhysRevC.79.054003
http://www.arxiv.org/abs/0708.2524
http://dx.doi.org/10.1103/PhysRevB.78.174528
http://www.arxiv.org/abs/0808.0150

	Acknowledgments
	References

